A FAST POISSON SOLVER BY CHEBYSHEV PSEUDOSPECTRAL METHOD USING REFLEXIVE DECOMPOSITION

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Poisson Solver by Chebyshev Pseudospectral Method Using Reflexive Decomposition

Poisson equation is frequently encountered in mathematical modeling for scientific and engineering applications. Fast Poisson numerical solvers for 2D and 3D problems are, thus, highly requested. In this paper, we consider solving the Poisson equation ∇2u = f(x, y) in the Cartesian domain Ω = [−1, 1] × [−1, 1], subject to all types of boundary conditions, discretized with the Chebyshev pseudosp...

متن کامل

On a Modiied Chebyshev Pseudospectral Method

presents a modiied Chebyshev pseudospec-tral method, involving mapping of the Chebyshev points, for solving rst-order hyperbolic initial boundary value problems. It is conjectured that the time step restriction for the modiied method is O(N ?1) compared to O(N ?2) for the standard Chebyshev pseudospectral method, where N is the number of discretization points in space. In the present paper we s...

متن کامل

Chebyshev Pseudospectral Method for Nonlinear Stabilization using Control Contraction Metrics

Real-time implementation of the control contraction metric (CCM) method for nonlinear stabilization involves computation of a shortest path (a geodesic) between pairs of states. In this paper we propose the use of a direct numerical method, namely a Chebyshev pseudospectral method, to compute a geodesic. We investigate the influence of various parameters and tolerances and provide practical rec...

متن کامل

On Using a Fast Multipole Method-based Poisson Solver in an Approximate Projection Method

Approximate projection methods are useful computational tools for solving the equations of timedependent incompressible flow. In this report we will present a new discretization of the approximate projection in an approximate projection method. The discretizations of divergence and gradient will be identical to those in existing approximate projection methodology using cell-centered values of p...

متن کامل

An error minimized pseudospectral penalty direct Poisson solver

This paper presents a direct Poisson solver based on an error minimized Chebyshev pseudospectral penalty formulation for problems defined on rectangular domains. In this study the penalty parameters are determined analytically such that the discrete L2 error is minimized. Numerical experiments are conducted and the results show that the penalty scheme computes numerical solutions with better ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2013

ISSN: 1027-5487

DOI: 10.11650/tjm.17.2013.2574